A stability condition for the differential equation $y^{\prime\prime}+p(x)y=0.$.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation

In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.

متن کامل

Almost sure stability for uncertain differential equation

Uncertain differential equation is a type of differential equation driven by Liu process. So far, concepts of stability and stability in mean for uncertain differential equations have been proposed. This paper aims at providing a concept of almost sure stability for uncertain differential equation. A sufficient condition is given for an uncertain differential equation being almost surely stable...

متن کامل

Fuzzy differential equation with nonlocal condition

We shall prove the existence and uniqueness theorem of a solution to the nonlocal fuzzy differential equation using the contraction mapping principle. Ams Mathematics Subject Classification : 94D05, 34C27

متن کامل

The stability of multifactor uncertain differential equation

This paper focuses on the stability of multifactor uncertain differential equation. The stability for the solution of multifactor uncertain differential equation is investigated, including stability in measure and stability in mean. Some stability theorems for the solution of such type of uncertain differential equation are given, in which some sufficient conditions for a multifactor uncertain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1965

ISSN: 0026-2285

DOI: 10.1307/mmj/1028999309